Contents

News

11 ROD Sponsors Emerging Professional of the Year Award at CIHT Yorkshire and the Humber Awards
11 ROD supports IABSE British Group event
12 ROD Exhibits at Highways UK 2022
40 Engineers Ireland extends ROD’s CPD Accreditation for maximum three-year period
41 New Recruits
43 Making a splash: ROD’s Dublin team learns to kayak
44 Five minutes with Ernest Etim
45 ROD wins gold at the 2022 Spirit Sandyford 5K Race

Transportation

13 Athy Distributor Road Progresses
14 An Bord Pleanála confirms CPO on Blake’s Corner scheme
15 Athlone to Dublin Cycleway nears completion in Leinster
16 Planning approval granted for Foynes to Limerick Road (including Adare Bypass)
18 N13 Bridgend to County Boundary Route Improvement Project
19 N26 at Cloongullane Bridge Project in Mayo officially opened
20 Making tracks on the West Clare Railway Greenway

Bridges

5 Narrow Water Bridge project moves to tender stage
6 Whitegates to Athlone Castle Cycle Scheme nears completion
8 Holywell Bridge: masonry arch bridge refurbishment works
9 Inspection, Assessment and Rehabilitation of Existing Bridges in Great Britain
10 Waterford City North Quays SDZ Infrastructure reaches construction stage
39 ROD-IS News Update

Energy and Environmental

22 Railway Order application for DART+ West submitted
23 Environmental Assessments of the draft National Roads 2040 Strategy
24 Sustainability Month at ROD
25 Sustainability Quiz
26 European Maritime Hydrogen and Marine Energy Conference
27 Sheskin Windfarm Receives Planning Consent for Grid Connection Works
28 Grid Connection Works for Energia Renewables

Geotechnical

36 N56 Letterilly to Kilraine Earthworks and monitoring
37 ROD-AECOM Awarded N61 Tulsk to Gortnacrannagh Road Project
38 TII Research Project: Peatlands Rehabilitation

Water

29 Stream Enhancements at Munreery Culvert
30 Cherrywood Regional Attenuation Pond
31 South Dublin County Development Plan Strategic Flood Risk Assessment
32 Surface Water Management in Fingal and South Dublin

Buildings

33 First Phase of O’Devaney Gardens Regeneration complete
34 Letterkenny CHU goes to Tender
35 Extending our Portfolio of School Projects in Ireland

Editor: Eoin Ó Catháin Design: Claire Lambert Cover Photo: N26 Cloongullane Bridge, Mayo
Welcome to our Winter 2022 Newsletter.

The headline issue at Highways UK was “the challenges in delivering a zero-carbon future for the highways sector” (p.13). Meanwhile, ROD’s Sustainability Month and the development of our formal sustainability plan aim to “maintain our focus on the high impact actions critical to meeting the UN Sustainability Development Goals” (p.24). It is therefore inspiring to see sustainability at the heart of all our projects.

At policy level, our environmental team is contributing to the draft “National Roads 2040” strategy, which “aims to enable the delivery of national policy, plans and targets — supporting the decarbonisation of the transport sector” (p.28). There is a tendency to assume that all new roads are climate negative, yet studies show that more than 90% of the emissions associated with roads are operational, the big emitters being heavy goods vehicles starting and stopping in congested areas. By removing bottlenecks, projects such as the Athy Distributor Road (p.13), Blake’s Corner (p.14), Foyles to Limerick (p.16), N13 Bridge/Chapel (p.18) and the N26 Clogullion (p.19) significantly reduce the emissions associated with essential transport. These projects and others, including Narrow Water Bridge (p.5), Whitetiques to Athlone Castle Bridge (p.6), Waterford City North Quays SDZ Infrastructure (p.10), and the West Clare Railway Greenway (p.19) are making provision for local and leisure journeys, to transfer to active travel, delivering energy, climate, health and community benefits.

For longer suburban commuting, the DART+ West project (p.22) provides a higher capacity alternative to the private car while replacing diesel haulage with electrification. The Waterford City North Quays SDZ Infrastructure project provides enhanced public transport facilities. As with the Athy Distributor Road and the Whitetiques to Athlone Castle Bridge projects, it provides pedestrian and cycle access to public transport - both from urban areas and by connecting to local greenways, encouraging both commuters and leisure travellers to use public transport.

Delivering these infrastructure improvements involves embedded carbon, and this must be addressed on the journey to net-zero, even if it represents a relatively small proportion of the overall transport impact. Avoid, reuse, recycle are the most effective ways to reduce embedded material impacts, and the historic Bawnore Rail Bridge (p.13) and West Clare Railway (p.21) projects provide great examples of how existing redundant infrastructure can be reused.

Our research on friction modelling “allows more focussed investment, thereby mitigating against the unnecessary use of scarce construction materials” (p.39) and the pilot studies on the N56 earthworks (p.36) will inform options to reduce the need to excavate peat from beneath road construction, the key challenge on the N61 Tusk to Gortnamarragh project (p.37). Our research on peatland rehabilitation (p.38) has the potential to go beyond reducing carbon impacts to enable peat to sequester carbon again.

ShiKin Windfarm (p.27) and grid connections to solar farms in north Co. Dublin and Co. Meath (p.28) demonstrate how the skills we have developed on roads schemes can be successfully applied within the sustainable energy field. Our work on the new road to Foynes Port (p.20) is facilitating the development of offshore wind power. Rebecca Kalligouris’s report on the European Maritime Hydrogen and Marine Energy Conference describes what is happening in Norway as “highly relevant to Ireland and the UK, which along with Norway, enjoy the most favourable offshore conditions for energy generation” (p.24).

Despite ongoing efforts to become carbon neutral, climate change is a reality. Our INFRALINK research project is “identifying potential extreme weather events in Ireland and related hazards, as well as infrastructure that would be affected by these events” (p.39). The flood defences that form part of the Waterford City North Quays SDZ infrastructure (p.10), Cherrywood Regional Attenuation Pond (p.30), and the SuDS measures incorporated into the Letterkenny CNU (p.34) are designed to meet these future challenges. The Stream Enhancements at Munnevyl Culvert (p.29), South Dublin Strategic Flood Risk Assessment (p.31); and Fingal Surface Water Management Plan (p.32) acknowledge that while some previous approaches to flood control failed to respect their ecological impacts, enhancing both ecology and flood control is possible by working with nature.

Sustainability is not just about climate. The UN goals also include education, wellbeing and reduced inequalities, priorities which are being addressed in our growing portfolio of schools (p.35), social housing (p.33) and community nursing units (p.34). As I wish you all a very Happy Christmas, I encourage you to look forward to the new year with pride and enthusiasm, as you reflect on the vital role engineers and environmental scientists play in delivering a sustainable world for future generations.

On 18th November 2022, the Government announced the commencement of the tender process for the Narrow Water Bridge, a major cross-border infrastructure project linking the Mourne Mountains in Co. Down and the Cooley Peninsula in Co. Louth. The bridge project is a long-standing and highly symbolic government commitment, which will improve access, strengthen North-South links and deepen connections between communities on both sides of the border. 63m in funding has been secured from the Shared Ireland Fund to see the project through the tender stage.

The bridge will cross the Newry River approximately 400m south of Narrow Water Keep at the A2 road roundabout, connecting the R175 Omneath Road south of Ferry Hill and the A2 dual carriageway. The bridge comprises a 6.5m wide single carriageway and a 3.0m wide pedestrian and cycle facility to either side of the carriageway. The total length of the scheme, including the bridge crossing, is approximately 660m. Due to the navigational requirements along the river for accessing Victoria Lock and the Albert Basin, the northern span of the bridge will be an opening movable span providing, when opened, an unlimited vertical clearance for a 20m wide navigational channel.

Visiting the site of the proposed bridge, An Taoiseach Micheál Martin underscored the significant tourism and economic benefits the project will bring to the region. He said: “Along with improving North-South connectivity, the bridge will be at the heart of a range of cross-border greenways, active travel, recreation and outdoor activity amenities planned for the Carlingford Lough area.”

The bridge itself is an iconic design, with a taller, longer fixed southern span supported by a south leaning pylons, and a second separate smaller, shorter northern span supported by twin pylons, which can open using a rolling bascule mechanism. The south fixed cable stayed span is 138m and northern cable stayed rolling bascule (opening) span is 57m. The opening span will be one of the longest, if not the longest, rolling bascule spans in the world. The asymmetry of the span is reflected in the pylons heights, with the higher (160m) pylons located on the southern side of the crossing. The lower (133m) twin pylons on the northern side support the opening span.

The cable-stays are small diameter stays comprised of parallel wires with multiple layers of corrosion protection. Bespoke stay anchorages connect the cables stays to the pylons and the orthotropic steel deck. The south fixed pylon will be constructed from structural steel, consisting of an outer and inner steel skin which will be inlaid with concrete ballast as there are no back-stays. Similarly, the steel pylons that support the bascule span will be inlaid with concrete.

The south pylons and deck are fixed to the south abutment, forming an integral connection. The bridge will have a movement joint at the intermediate piers and at the north abutment, as required to allow the opening of the north bascule span and to accommodate bridge deck expansion and contraction.

The bridge will be remotely operated from a control building located on the southern approach, c.350m south of the navigable channel. The project also requires the construction of a new navigational beacon downstream of the proposed bridge, the installation of variable message signs (VMS) on the approaches, and the integration with the proposed Carlingford Lough Greenway.

ROD is leading the detailed design and management of the project. We are supported by Hansety & Hanover on the moveable bridge and by OBPA Architects and JN&G Traynor on the control building. Having previously worked on the scheme between 2008 and 2013, we were delighted with the opportunity to support our client, South County Council, and the key project stakeholders reactivating the project to bring it to tender stage. Our previous work included undertaking feasibility studies, preliminary design and aspects of the detailed design, the Environmental Statement/Environmental Impact Statement, Compulsory Purchase Order/Valuing Order and both planning applications in the Republic of Ireland and Northern Ireland.
Last September, a significant milestone in the EuroVelo Route 2 Dublin to Galway Cycleway project was reached with the lifting into position of new 104m long, pedestrian and cycleway bridge across the River Shannon in Athlone town centre. The bridge is a vital link in Ireland’s first ever dedicated inter-city route for cyclists and walkers.

ROD-AECOM, in partnership with sub consultants Sean Harrington Architects, developed the design of the slender, two span, steel girder bridge. In 2017, Westmeath County Council received planning approval for the new bridge crossing. ROD-AECOM Alliance was awarded the contract for the detailed design and construction stages of the project in 2019. Following the award of the main contract for construction to Jons Civil Engineering Limited, work commenced on site in August 2021. The works are expected to be completed by mid-2023.

The constrained nature of the site within Athlone’s town centre added a layer of complexity to the project, and careful planning of construction logistics and execution was needed. Substantial landside works were carried out along the narrow riverbanks, including construction of the bridge abutments and the foundations for the ramp structures linking the bridge to the proposed riverside boardwalks.

Following the initial site clearance, the ground was prepared to receive the foundations, with the structures supported on piles. The contractor proposed the use of mini-piles so the piling activity could be progressed outside of the permitted window (based on environmental restrictions) for construction activity in the river.

The structural steel for the bridge was fabricated in Spain by Tecade. The steel was transported to site in 13 separate pieces by sea and road via Dublin Port. The steelwork was assembled on site and the primary connections between the components were made, with the infill concrete to the deck poured, mortar was poured at the bearings, and the temporary supports in the river were removed. The team now moves on to completion of the steelwork on the deck, installation of the approach structures and the critical finishing works.

As we approach the closing stages of the project, we would like to acknowledge the trojan efforts of the contractor’s team, particularly Garry Gilsenon, David Lennihan and, indeed, Managing Director John Pentony, who has taken a personal interest in the project. Sean Harrington led the architectural team, whose contribution will become more evident as we approach the final stages of the project. Special thanks are due to our site team, who were ably supported by the technical team in the office, including Matt Ryan, Phil Cooney, Darren Quigley, Luca Gian Russo, Alisa Hayatpetova, Paul Kissane, and Zherzen Xu amongst others. And, finally, the dedication of the client team, including Ambrose Clarke, Michael Kelly and Darren Fulham, deserves to be mentioned, as they have been tireless in their pursuit of the best bridge solution for the people of Athlone and Westmeath.

Whitegates to Athlone Castle
Cycle Scheme nears completion

Article Pankaj Kumar Das

The skids extended out into the river until the water reached a sufficient depth to allow them to transfer onto special supports positioned on the barge. The supports incorporated jacks that helped raise the bridge deck to its final position. The jacks remained lowered during transfer and travel to ensure stability during their transportation and to facilitate the steelwork passing under the existing railway bridge between the site compound and the destination.

Multiple small motorboats were used to manage the movement of the barges, with the finest of adjustments made to the path and orientation of the assembly, when necessary.

With the first segment of the bridge installed, the riverscape changed dramatically, and crowds began to gather to wish ROD’s resident engineering team of John Gregan and Rachel Hamey well on the project. Rachel even made the front page of the local newspaper, the Westmeath Independent, as part of its coverage of the project! The second and third components were installed over a period of a week. After the installation of the main bridge components, the primary connections between the components were made, the infill concrete to the deck was poured, mortar was poured at the bearings, and the temporary supports in the river were removed. The team now moves on to completion of the steelwork on the deck, installation of the approach structures and the critical finishing works.

As we approach the closing stages of the project, we would like to acknowledge the trojan efforts of the contractor’s team, particularly Garry Gilsenon, David Lennihan and, indeed, Managing Director John Pentony, who has taken a personal interest in the project. Sean Harrington led the architectural team, whose contribution will become more evident as we approach the final stages of the project. Special thanks are due to our site team, who were ably supported by the technical team in the office, including Matt Ryan, Phil Cooney, Darren Quigley, Luca Gian Russo, Alisa Hayatpetova, Paul Kissane, and Zherzen Xu amongst others. And, finally, the dedication of the client team, including Ambrose Clarke, Michael Kelly and Darren Fulham, deserves to be mentioned, as they have been tireless in their pursuit of the best bridge solution for the people of Athlone and Westmeath.

Constructing a pier in the middle of the river while maintaining navigational access and avoiding any negative impacts on water quality presented a challenge for the project team. The central pier was founded on a combination of steel driven piles and mini pile anchors drilled five metres into rock on the riverbed. The river pier itself is elliptical in profile and extends from below the riverbed to the underside of the bridge deck. Once the pier was finished, the cofferdam was removed, and temporary supports were installed either side of it in readiness for the erection of the bridge deck components.

The structural steel for the bridge was fabricated in Spain by Tecade. The steel was transported to site in 13 separate pieces by sea and road via Dublin Port. The steelwork was assembled on site and transported downstream for installation. Openings were left in the top of the bridge deck to accommodate the final welding activity and to allow concrete to be poured into the bridge deck to stabilise the bridge when pedestrians walk across it.

Transporting the assembled units down river to the bridge location required the specialist expertise of Mammoot and Coastaway. The bridge units weighed more than 150 tonnes each. They were slid onto a barge on skids via a temporary jetty set up at the site compound. The skids extended out into the river until the water reached a
Since the establishment of our UK office in Leeds, ROD has been involved in the inspection, assessment and rehabilitation of various bridges across Great Britain, including precast concrete bridges, masonry arch bridges and major suspension bridges. Two of these bridges are profiled below:

Forge Island Bridge is an existing concrete beam and slab bridge on the edge of Rotherham in South Yorkshire. It is formed of precast ‘M’ beams, with in situ slab and horizontal end diaphragms. The bridge provides access to a site originally earmarked for development, but due to the absence of records, the capacity of the bridge and its existing condition were unknown.

As part of our initial analysis of the bridge, our team carried out a desktop study, visual inspection and cover meter survey. This informed the scoping of intrusive investigations, including a 2m long horizontal core to obtain further information about its condition and load bearing capacity, including the existing prestressing arrangement. This practical approach enabled us to gather sufficient evidence to confirm that the capacity of the existing bridge is adequate without the need for costly structural alterations or strengthening. ROD also produced a remedial works specification for the replacement of the bridge deck waterproofing, expansion joints, surfacing, concrete repairs and bearings to provide a 50-year design life.

ROD has undertaken several pieces of work on the 2220m long Humber Bridge, a Grade I listed bridge across the River Humber Estuary. In addition to the Barton Tower side span, A-frame temporary replacement works previously reported upon, our commission was extended to include Hessle Tower side span A-frame temporary replacement works.

As part of the works, ROD reviewed the archive information of general inspections and principal inspections and advised our client on how future inspections could be planned to maximise their benefit whilst also driving value.
Waterford City North Quays SDZ Infrastructure reaches construction stage

Article by Christian Smith

In November 2022, the Government approved €170m in funding for the Waterford City Public Infrastructure Project. The project will deliver the infrastructure necessary to service the Waterford North Quays Strategic Development Zone (SDZ) and facilitate the expansion of the city to the north side of the River Suir. The decision enabled Waterford City and County Council (WCCC) to proceed on the North Quays Strategic Development Zone (SDZ) and facilitate the future-proof development of the city to the north of Waterford.

The works will dovetail with planned Irish Rail track upgrade works, which will integrate the main works contract infrastructure with the railway network, and eight advanced works packages contracted by WCCC over the past four years. These enabling works packages were developed to reduce project risk and the level of traffic disruption in the city during these major regenerative infrastructure works. Two significant advanced works contracts currently being progressed will deliver the infrastructure necessary to service the Waterford City Public Infrastructure Project. The project is due to commence in Q1 2023, with a 40-month construction period.

The works comprise:

- 1.3km of urban dual carriageway and local road upgrades, including new cycle and pedestrian infrastructure in the Ferrybank area, north of the SDZ site. Significant road junctions and bridges will also be delivered to provide the necessary connections to the SDZ across the Waterford to Rosslare Railway on its northern periphery;
- a major multimodal, sustainable transport interchange hub located directly adjacent and central to the northern edge of the SDZ site;
- a 207m long pedestrian and cycle bridge across the River Suir, located directly adjacent and central to the northern edge of the SDZ site;
- a 207m long pedestrian and cycle bridge across the River Suir (Sustainable Transport Bridge), with an inclusive train station to replace the existing Plunkett station, located to the north of Waterford and Rosslare greenways;
- the creation of a large public plaza on the south side of the river to act as the gateway to the new river bridge and the SDZ beyond from the existing city centre;
- 3km of flood defences along the SDZ northern boundary, which will link in with a further 1.1km of new flood defences west of the SDZ development (subject to an An Bord Pleanála approval) to future-proof the new and existing public infrastructure on the north side of Waterford.

The Government decision to fund the project marked a significant milestone for the project team, who have been working on the planning, design and procurement phases since 2016. Great credit is due to WCCC Chief Executive Michael Walsh and his team for working tirelessly with the National Transport Authority (NTA) and numerous government departments to progress the project to the construction stage.

ROD Sponsors Emerging Professional of the Year Award at CIHT Yorkshire and the Humber Awards

Article by Jim Thorpe

ROD was pleased to sponsor the Emerging Professional of the Year Award at this year’s Chartered Institution of Highways & Transportation (CIHT) Yorkshire and the Humber Awards. Known as the ‘Blind Jack’ award, it commemorates John Metcalfe of Knaresborough in Harrogate, North Yorkshire, who designed and helped build nearly 300km of highways across northern England, despite losing his eyesight at the age of six years old.

The winner of the award was Tom Place, a project manager with National Highways, who created peer groups and lesson sharing seminars for new recruits at National Highways who might otherwise have felt overwhelmed by how much there can be to learn and how many people to get to know when working on projects. These two initiatives proved so successful in supporting knowledge sharing, building team spirit and fostering mutual support that they were rolled out across the organisation’s northern teams before being taken up by its southern teams.

ROD supports IABSE British Group event

Article by John Collins

ROD enjoys close ties with the International Association of Bridge and Structural Engineering (IABSE), the scientific/technical association that aims to advance, through the exchange of knowledge, the practice of structural engineering. Our Chief Bridge Engineer Tony Dempsey was elected a fellow of IABSE last year, ROD Consultant Ciarán Hanley is Secretary of its Irish Group while I am a member of the British Group’s Executive Committee.

On 1 November 2022, I chaired an IABSE British Group event in Leeds, which was sponsored by ROD. Aimed at early career professionals, the event, titled ‘Journey to Success’, showcased the careers of four pre-eminent engineers: a bridge engineer, a building services engineer, a movable bridge specialist and a tall permanent way engineer. The key message delivered by the speakers was that surrounding yourself with good people and sometimes saying ‘yes’ where you might otherwise say ‘no’ are critical to developing a successful career. Our UK team thoroughly enjoyed the networking opportunities the evening provided.
ROD Exhibits at Highways UK 2022

Article by Jonathan Llywelyn-Jones

In November 2022, ROD exhibited at Highways UK, a two-day event held at the National Exhibition Centre (NEC) in Birmingham. This annual conference and exhibition has established itself as the sector’s must-attend event, bringing together those responsible for planning, developing, maintaining and future-proofing the UK’s road network. With over 7,500 attendees, 200 exhibitors and 300 speakers present, it provided a great opportunity for ROD to engage with national and local authorities, contractors, and consultant engineers across Great Britain (GB), including National Highways, Department for Transport (DfT), Graham, Fermosa, Kier, Sisk, Morgan Sindall, AECOM, Amey and Jacobs.

Our main objectives in exhibiting at the event were to highlight the capabilities of our GB team in Otley and showcase our growing portfolio of relevant projects, including the award-winning Northern Spine Bridge in Sunderland, the A6 Randalstown to Castledawson ECI and the A6 Dungiven to Drumahoe dualling scheme in Northern Ireland.

The conference and exhibition was a great success and we look forward to arranging follow-up meetings with those we met to explore opportunities and projects where we can work together in the future.

A second presentation covered the impact that the UK Government’s new Procurement Bill will have on the highways sector. Since leaving the EU, the UK Government has taken the opportunity to replace the existing governance provided by the Public Contracts Regulations 2015 – which implements the 2014 EU Public Sector Procurement Directive – with the Procurement Bill. Laura Wisdom, a Partner of Burges Salmon LLP, wrote part of the new legislation; she advised that the legislation was designed to simplify public procurement and to increase the early engagement of potential providers. The new Bill is currently at Committee stage in the House of Lords and is expected to become an Act of Parliament by Q2 2023, with secondary legislation due by Q4 2023. The Government will provide training to help the industry adjust to the new legislation.

A panel discussion, titled “Holistic network planning for users of the future”, explored how net zero carbon could be achieved on the local road network by 2050. National Active Travel Commissioner Chris Boardman, representing Active Travel England, spoke about the need to make both public transport and alternative modes of travel, such as cycling, more user friendly to reduce carbon emissions. There was broad consensus that greater consideration should be given to cycle lanes and how they link into the existing infrastructure, with panelists describing how cycle lanes often switch from being on the left side of the road to the right, requiring cyclists to navigate across several lanes of traffic. It was proposed that stakeholders, including Active Travel England, participate in the early stages of design and that designers give due consideration to how new designs integrate with the existing infrastructure.

Achieving net zero carbon travel on the strategic road network by 2050

- Building the infrastructure to support the transition from internal combustion powered vehicles to electric vehicles and the innovation required to achieve this
- Evaluation of smart motorway upgrades and public perception of smart motorway safety
- Decreasing the time required for a project to pass through the Development Consent Order (DCO) process
- Designing for the future and reducing the impact on the end user through fewer, less frequent roadworks

The conference and exhibition was a great success and we look forward to arranging follow-up meetings with those we met to explore opportunities and projects where we can work together in the future.

Athy Distributor Road Progresses

Article by Daire Ó Riagáin

Works are progressing on the construction of the Athy Distributor Road Project, which will provide a new 3.4km single carriageway distributor road around the southern side of Athy. The route largely follows the line of the disused Athy to Wohill Colliery railway line. The project includes 3.4km of shared cycleway/footway, including the refurbishment of the disused railway bridge over the River Barrow, which was built in 1918. The existing railway bridge was the first reinforced concrete railway bridge over a river in Ireland and is a protected structure. There are dedicated cycleway links to the Barrow Way and Athy Train Station, supporting the objectives and actions contained in Smarter Travel.

This image above shows two 80m long braced steel plates girders, constructed of weathering steel, for a new road crossing over the River Barrow and Grand Canal. The River Barrow is designated a Special Area of Conservation (SAC) and the Grand Canal is designated a proposed Natural Heritage Area (pNHA). The bridge was designed as a single span structure to minimise its impact on the SAC, and weathering steel was selected to mitigate the health and safety risks associated with maintenance regimes on a painted structure. The bridge was manufactured in Co. Laois and transported to site in six sections. During November and December 2022, these sections were welded together ready for transportation and lifting into their final position, 20m downstream of the existing railway bridge.

In addition to acting as the Employer’s Representative, ROD-AECOM is also providing a team of Resident Engineers to administer and supervise the contract through the construction and handover stages. Works are being carried out by Barn Civil Ltd., with completion due in 2023.

80m long braced steel plates girders.
An Bord Pleanála confirms CPO on Blake’s Corner scheme

Article by Deirdre Neff

We are pleased to report that the Compulsory Purchase Order (CPO) for the N67 / N85 Ennistymon Inner Relief Road (Blake’s Corner) scheme has been confirmed by An Bord Pleanála. The decision marks an important milestone in the journey towards alleviating longstanding traffic issues within Ennistymon. It follows Clare County Council’s approval of the Part VIII planning application for the scheme in April 2018.

Cllr Tony O’Brien, Cathaoirleach of Clare County Council, welcomed the news, saying: “I look forward to [seeing] progress on this important project, which will enhance and open up North Clare to more visitors, and will make the experience of visiting the area more enjoyable.”

Traffic congestion at Ennistymon’s historical Blake’s Corner has been a cause of serious concern for many years. Over 1,100 vehicles an hour traverse the junction during busy periods, and larger vehicles require all other traffic to stop to complete a turning manoeuvre. The children currently have to negotiate their way between stopped or slow vehicles at the junction.

We are pleased to report that the Compulsory Purchase Order (CPO) for the N67 / N85 Ennistymon Inner Relief Road (Blake’s Corner) scheme has been confirmed by An Bord Pleanála. The decision marks an important milestone in the journey towards alleviating longstanding traffic issues within Ennistymon. It follows Clare County Council’s approval of the Part VIII planning application for the scheme in April 2018.

Cllr Tony O’Brien, Cathaoirleach of Clare County Council, welcomed the news, saying: “I look forward to [seeing] progress on this important project, which will enhance and open up North Clare to more visitors, and will make the experience of visiting the area more enjoyable.”

Traffic congestion at Ennistymon’s historical Blake’s Corner has been a cause of serious concern for many years. Over 1,100 vehicles an hour traverse the junction during busy periods, and larger vehicles require all other traffic to stop to complete a turning manoeuvre. The children currently have to negotiate their way between stopped or slow vehicles at the junction.

The proposed scheme involves the construction of a new bridge approximately 80m upstream of the existing seven-arch masonry Michael Conwy Bridge. This will divert the N67 National Secondary Route away from the bottom of the Main Street, and will facilitate the pedestrianisation of the existing bridge. New plazas will be created on each side of the existing bridge, extending the town centre access to the west side of the river. The scheme features enhanced crossing arrangements for pedestrians on all approaches, complementary landscaping, lighting and services enhancements and other ancillary elements. As well as benefitting traffic, the works will greatly benefit schoolchildren moving between the residential areas on the east side of the river and the schools on the west side. The children currently have to negotiate their way between stopped or slow vehicles at the junction.

The proposed scheme involves the construction of a new bridge approximately 80m upstream of the existing seven-arch masonry Michael Conwy Bridge. This will divert the N67 National Secondary Route away from the bottom of the Main Street, and will facilitate the pedestrianisation of the existing bridge. New plazas will be created on each side of the existing bridge, extending the town centre access to the west side of the river. The scheme features enhanced crossing arrangements for pedestrians on all approaches, complementary landscaping, lighting and services enhancements and other ancillary elements. As well as benefitting traffic, the works will greatly benefit schoolchildren moving between the residential areas on the east side of the river and the schools on the west side. The children currently have to negotiate their way between stopped or slow vehicles at the junction.

It’s brilliant news to finally have the CPO confirmed, thereby completing the planning phase of the project. An extensive amount of optioneering, modelling, design and assessment was undertaken to get to where we are now, and we look forward to now delivering a safer and more inclusive environment for the people of Ennistymon.

Project Director, Eoin Ó’Catháin

Athlone to Dublin Cycleway nears completion in Leinster

Article by Séamus MacGuairlt

The completion of the new bridge over the River Shannon in Athlone marks a key milestone for the proposed Galway to Dublin cycleway, which is part of Euro-Velo Route 2. ROD-AECOM was appointed by Westmeath County Council (for TII, Waterways Ireland and 5 other local authorities) to plan and design the 136km length of route across Leinster now nearing completion. The route extends westwards from Maynooth at the edge of the Dublin metropolitan area, along 94km of the Royal Canal towpath and 45km of The Old Rail Trail on the disused railway line from Mullingar to Athlone. It aims to bring visitors to generate revenue and jobs into economically disadvantaged, rural areas of the country, in much the same way that the very successful Great Western Greenway in Mayo and the Waterford Greenway have done in their regions.

We adopted a holistic approach to the planning of the project, assembling a multidisciplinary design team comprising engineers, architects, ecologists, archaeologists and landscape architects. In delivering the project, the team drew upon international best practice in cycling infrastructure to overturn the conventional wisdom that the ‘shortest route is best’ and to champion the ‘slow and interesting’ route instead. A total of ten agencies came together, under the management and coordination of Transport Infrastructure Ireland (TII), to deliver the project. These included Waterways Ireland, CIE/Iarnród Éireann, Fáilte Ireland and six local authorities, namely, Westmeath, Meath, Kildare, Roscommon, Galway County and Galway City.

The Galway to Dublin Cycleway will herald a new era of long-distance cycle commuting in Ireland.
Planning approval granted for Foynes to Limerick Road

Article by Gemma Rothwell

There will also be 3 bridges over the disused Limerick to Foynes railway line, for which there is a separate EU objective to reinstate a freight railway line to Foynes Port, which is to be progressed in the coming years.

Environmental Challenges
West Limerick has an unusually high density of protected ecological sites, including Special Areas of Conservation, Special Protection Areas and Natural Heritage Areas. The proposed road is routed around these sites and a proposed bridge will clear-span over the River Maigue SAC. Associated environmental sensitivities included flight-paths for bats, including the Lesser Horseshoe Bat, as well as Balm Dams, for which the scheme will implement the latest protective mitigation measures.

Other environmental constraints included numerous cultural heritage sites such as ring-forts, cashels, and demesne landscapes, as well as intensive dairy and equine farming on high-quality agricultural lands.

The terrain is generally very flat, with high groundwater and complex hydrogeological conditions. This posed a particular challenge for the earthworks balance along the route with few opportunities for cuttings to win materials for embankment construction across the flat and low-lying floodplains of the Rivers Maigue and Deel.

Climate Impact
The Direction from An Bord Pleanála to approve the proposed road development included specific consideration of the potential for climate impact as follows:

Approval for the proposed development would be consistent with national climate ambitions and with the relevant provisions of the Climate Action Plan 2021 and, noting in particular Chapter 15 which states that the Climate Action Plan for transport will support and build from several key national policy plans that are driving the necessary changes, including inter-alia Project Ireland 2040 and the National Planning Framework.”

This aspect of the planning approval is of broad relevance to the future development of national road improvement schemes, and it demonstrates how new and improved roads can play their part in the sustainable development of Ireland.

“I greatly welcome the successful outcome of the application for approval of the proposed Foynes to Limerick Road scheme. It is of particular personal relevance to my family because, with our roots in Kerry, we have shared the hard road across County Limerick for too many years. I would like to congratulate our project team who worked hard over an eight-year period to achieve this success. There are too many to mention them all, but I would particularly like to highlight the major contribution of our Project Manager Michael Conroy (a proud Limerick man), our Land Liaison Officer John Murphy and our Environmental Coordinator Gemma Rothwell. Our work was greatly assisted by an expert group of environmental specialists, many of whom have been partners for us on numerous other projects. Great credit is due to our client team in the Limerick National Roads Design Office, especially Tim Fitzgerald and David Leahy. We look forward to the day when the new road is completed.”

Reaction to the ABP decision
Project Director Séamus MacGearailt (for ROD-AECOM)
N13 Bridgend to County Boundary Route Improvement Project, Donegal

The project is one of several road schemes in Donegal for which ROD-AECOM is delivering engineering services. We will soon commence work on the Letterkenny Southern Network Improvements project, Barnmore Gap Greenway, Burtoncourt to Letterkenny Greenway, and the N15 Corcam Bends Improvement Project. These contracts provide a welcome opportunity for ROD / ROD-AECOM to continue our association with the project team in Donegal NROD, following our success in bringing the following roads projects to completion: the N56 Letterkilety to Kilnare project; N56 Drumbeigh to Inver project; N56 Mountcharles to Drumbeigh Improvement project; N15 Blacklaxton Bridge Phase 1, N14-N15 AS Link Study; and the N56 Cloghboile to Boyoughter Improvements.

The project is currently in Phase 2 Project Management Guidelines (PMGs), with assessments being carried out on several improvement options prior to the selection of an Emerging Preferred Option in early 2023. A public consultation on the route corridor options was recently held at An Grianán Hotel, Burt, close to Bridgend.

The project is one of several road schemes in Donegal for which ROD-AECOM is delivering engineering services. We will soon commence work on the Letterkenny Southern Network Improvements project, Barnmore Gap Greenway, Burtoncourt to Letterkenny Greenway, and the N15 Corcam Bends Improvement Project. These contracts provide a welcome opportunity for ROD / ROD-AECOM to continue our association with the project team in Donegal NROD, following our success in bringing the following roads projects to completion: the N56 Letterkilety to Kilnare project; N56 Drumbeigh to Inver project; N56 Mountcharles to Drumbeigh Improvement project; N15 Blacklaxton Bridge Phase 1, N14-N15 AS Link Study; and the N56 Cloghboile to Boyoughter Improvements.
Making tracks on the West Clare Railway Greenway

Article by Brian Finghan

Work is progressing on the West Clare Railway Greenway project to develop an attractive cycling and walking facility for tourists and locals along the route of the old West Clare Railway. The 85km greenway will be delivered in four sections: Kilrush to Kilkee, Ennis to Ennistymon, Ennistymon to Miltown Malbay and Miltown Malbay to Moystown. ROD is progressing the option selection, design and assessment phases of the first and second sections between Kilrush and Kilkee and Ennis and Ennistymon respectively. As part of the design and planning process, our transportation and environmental teams have been working closely with Clare County Council and specialist subconsultants to identify and assess the constraints along both sections of the greenway, with a view to minimising, where possible, the impacts of the project on the surrounding environment and communities. Extensive winter surveys are being carried out as part of this process. The projects are being progressed in line with the Code of Best Practice for National and Regional Greenways and Transport Infrastructure Ireland’s (TII) new Active Travel Guidelines.

Section One: Kilrush and Kilkee

A second round of public consultation took place in September 2022, with ROD and Clare County Council presenting route options for the greenway to the public. There was very constructive landowner engagement throughout, with both the positives and negatives of the scheme as viewed by the affected landowners being aired. This is invaluable feedback to the design team in seeking to optimise the routing and layout of the scheme. This, together with more detailed topographical and environmental surveys, is informing the development of the emerging preferred route corridor. A third public consultation, at which this emerging preferred route corridor will be displayed, will take place in early 2023.

Section two: Ennis to Ennistymon

The second section of the route consists of approximately 25km of greenway. The scheme study area was displayed at a public consultation in October 2022. The design team is now assimilating the project constraints as defined by our team of environmental specialists, and this will be used to develop feasible route corridor options. A second public consultation on these potential route corridor options will take place in the first half of 2023.

It is hoped that planning applications for both schemes can be made to An Bord Pleanála in the next 12-18 months.
In July 2022, a Railway Order application to develop the €1 billion DART+ West project was submitted to An Bord Pleanála (ABP). The application seeks permission to extend the electrified DART network from Connolly/Spencer Dock area to west of Maynooth, Co Kildare and to M3 Parkway, Co Meath. It is the first of the DART+ Programme applications to be submitted for planning. The DART+ Southwest application is expected to be submitted in early 2023, with DART+ Coastal to follow.

Funded by the National Transport Authority (NTA), the DART+ West project will provide a sustainable, electrified, reliable and more frequent rail service to Irish Rail customers and improve capacity of Maynooth and M3 Parkway lines to the city centre; Approximately 40km of electrification and re-signalling of the project passes within the functional areas of Dublin City Council, Fingal County Council, Meath County Council and Kildare County Council. Planned infrastructure improvements include:

- Closure of level crossings and provision of replacement bridges, where required;
- Construction of a new DART depot facility west of Maynooth for the maintenance and parking of trains;
- Interventions at existing bridges over the rail line where insufficient clearances for overhead electrification equipment exist; and
- Substations, electrical buildings and all other civil and ancillary works necessary to accommodate the project.

As Railway Order lead on the project, ROD worked closely with IDOM and Jarnið Eiréinn’s delivery team to deliver the Environmental Impact Assessment Report (EIAR), Appropriate Assessment (AA) and draft Railway Order. Prior to the submission of the Railway Order application, two non-statutory virtual public consultations and one in-person consultation were held. The virtual consultations took place in 2020 while COVID-19 restrictions were in place, and the physical consultation event took place in Ashtraw in 2022. The statutory consultation period (i.e., the formal consultation as part of the ABP process) closed in October 2022, and the project team is now awaiting receipt of submissions from ABP.

Construction is expected to begin on the project in 2024 subject to receipt of the necessary planning and funding approvals.

Environmental Assessments of the Draft National Roads 2040 Strategy

National Roads 2040 (NR2040) is Transport Infrastructure Ireland (TII) long term strategy for planning, operating, and maintaining the National Roads network. The strategy aims to enable the delivery of Project Ireland 2040, National Planning Framework. It aligns and supports the Department of Transport’s National Investment Framework for Transport in Ireland (NIFTI) and other government policy, including the Climate Action Plan 2021 (CAP). The CAP is required to be reviewed and updated annually and is currently being updated to ensure alignment with the State’s legally binding economy-wide carbon budgets and sectoral ceilings. ROD’s environmental team informed the development of the draft Strategy, working closely with TII and AECOM (the strategy development team), on the various iterations of the strategy, identifying potential environmental issues. The draft strategy was published for public consultation from August to October of this year, for a period of 10 weeks. The environmental assessments with the strategy included:

- Strategic Environmental Assessment (SEA) Environmental Report (IER)
- Draft Natura Impact Statement (NIS)
- Strategic Flood Risk Assessment (SFRA)

TII’s vision is for the National Roads network to be an evolving sustainable transport system focused on safety, innovation, accessibility and mobility of people, goods, and services. The strategy will be delivered by TII in collaboration with other government agencies and transport stakeholders and will provide a consistent approach to achieve this vision.

NR2040 aims to enable the delivery of national policy, plans and targets including supporting the decarbonisation of the transport sector (51% target reduction by 2030). It defines TII investment portfolios for coming years and provides guidance to Sponsoring Agencies and Local Authorities.

Ireland’s transport system is heavily dependent on road transport. The national road network facilitates approximately 3.5 million private vehicle trips and 82,000 heavy goods vehicle trips daily. It supports the movement of people and goods for a range of purposes, including providing access to health, education, employment and tourism services by car, public transport and active travel.

The SEA process is recognised as a central legislative framework for environmental assessment of plans and embeds sustainability into the policy making process. SEA integrates with the AA and SFRA processes and collectively helps raise awareness of significant environmental issues. The environmental assessments undertaken by ROD’s environmental team collectively identified potential significant environmental impacts resulting from NR2040. The teams suggested changes to the strategy text or mitigation measures to be applied as part of the implementation of the strategy. The Public consultation feedback on the draft strategy and environmental reports is currently being analysed and any changes to the strategy will be screened for environmental impacts. The final strategy is due to be completed in early 2023 and will be supported by the appropriate environmental assessments.
Sustainability Month at ROD

Article by Claire Cable and Frances O’Kelly

The month of October marked our annual celebration of all things sustainable. Our environmental team took the lead, delivering an engaging, informative programme of activities with sustainability as the core component. The programme included a series of lunchtime presentations on topics including climate change, emissions reductions that can be achieved through the design process, the circular economy, and sustainable concrete.

The lunchtime presentations comprised:
- Engineering a Reduced Carbon World presented by John Collins, Michael Chung, and Rebekkah Kaligorsky of ROD.
- Circular Economy in Engineering Practice: Balancing short and long-term gains by Assistant Professor in Environmental Systems and Energy Engineering, Trinity College Dublin, Dr. John Gallagher.
- Sustainable Concrete Facing Brick presented by Specifications Consultant at Acheson & Glover, Gareth McBrearty.

A presentation was also given by Managing Director Jim Thorpe and Sustainability Manager Frances O’Kelly to consult with staff on our draft Sustainability Plan. The Plan is our long-term roadmap that will help shape the company’s activities and support our commitment to achieving net zero emissions and becoming a climate-neutral company by 2050. It will help us maintain our focus on the high impact actions critical to meeting the relevant SDGs and current intergovernmental targets, while still being flexible enough to enable us to respond to changing environmental and climate commitments.

It provides for a coordinated response across our buildings, bridges, transportation, environmental, water and research teams, thereby ensuring high levels of employee engagement in actions aimed at delivering a more sustainable, safer, healthier, and climate resilient society and environment.

Director and Environmental Manager Joe Kelly also presented an update on the changes to our Environmental Management System (EMS), which is currently being integrated into an Integrated Management System (IMS). This includes both Environmental Management and Quality Procedures, which will be rolled out in the coming year.

Through ROD’s staff participation in the quizzes, we helped raise money supporting the work of several organisations including: the World Food Programme; UNICEF; Engineers Without Borders; and Choose Love.

A presentation was also given by Managing Director Jim Thorpe and Sustainability Manager Frances O’Kelly to consult with staff on our draft Sustainability Plan. The Plan is our long-term roadmap that will help shape the company’s activities and support our commitment to achieving net zero emissions and becoming a climate-neutral company by 2050. It will help us maintain our focus on the high impact actions critical to meeting the relevant SDGs and current intergovernmental targets, while still being flexible enough to enable us to respond to changing environmental and climate commitments. It provides for a coordinated response across our buildings, bridges, transportation, environmental, water and research teams, thereby ensuring high levels of employee engagement in actions aimed at delivering a more sustainable, safer, healthier, and climate resilient society and environment.

Director and Environmental Manager Joe Kelly also presented an update on the changes to our Environmental Management System (EMS), which is currently being integrated into an Integrated Management System (IMS). This includes both Environmental Management and Quality Procedures, which will be rolled out in the coming year.

Sustainability Quiz

1. The World Bank’s international threshold for extreme poverty is:
 a) 1.25 dollars
 b) 1.90 dollars
 c) 5 dollars

2. Food production will need to increase by what percentage to feed the world in 2050?
 a) 20%
 b) 40%
 c) 60%

3. What is the average life expectancy in the world in 2022?
 a) 53 years
 b) 61 years
 c) 71 years

4. How many adults around the world are unable to read and write?
 a) 2 in 10
 b) 3 in 10
 c) 4 in 10

5. Worldwide, how many young women were married in childhood in 2021?
 a) 1 in 10
 b) 1 in 5
 c) 1 in 4

6. How many people in the world do not have access to basic drinking water?
 a) 4.2 billion
 b) 5 billion
 c) 5.5 billion

7. How many people in the world did not have access to electricity in 2020?
 a) 733 million
 b) 1.3 billion
 c) 3 billion

8. What percentage of the world’s population works in the informal economy?
 a) 41%
 b) 51%
 c) 61%

9. What percentage of the population of the world’s least developed countries have access to the internet?
 a) 19%
 b) 26%
 c) 34%

10. How many people have experienced discrimination on at least one of the grounds prohibited under international human rights law?
 a) 4.2 billion
 b) 5 billion
 c) 5.5 billion

11. How many people are projected to live in cities in 2030?
 a) 2.6 billion
 b) 3 billion
 c) 3.5 billion

12. How much food is wasted worldwide each year?
 a) 1.2 billion tonnes
 b) 1.3 billion tonnes
 c) 1.4 billion tonnes

13. How many people worldwide will be displaced by drought by 2030?
 a) 700 million
 b) 800 million
 c) 850 million

14. What fraction of global annual CO2 emissions is absorbed by oceans?
 a) 1/3
 b) 1/4
 c) 1/6

15. How many hectares of forest are destroyed around the world each year?
 a) 8 million
 b) 9 million
 c) 10 million

16. What percentage of the global population lives in conflict-affected countries?
 a) 25%
 b) 33%
 c) 43%

17. How much foreign direct investment was provided to support sustainable development in 2021?
 a) 1.28 trillion
 b) 1.36 trillion
 c) 1.58 trillion

Answers on the inside back cover
Hydrogen and ammonia are gaining increasing international focus as a means of storing and distributing surplus energy from major wind and solar generation facilities. In September 2022, Eoin Ó Catháin and Rebekkah Kaligorsky attended the International Conference on Maritime Hydrogen and Marine Energy in Florø, Norway. The conference focused on current and emerging technologies for the production, storage, and transport of hydrogen and ammonia, as well as discussing the latest developments in terms of delivery and servicing of offshore wind energy facilities. The conference brought together Scandinavian expertise and world-leading players in the fields of maritime technology and renewable energy to discuss the challenges harnessing offshore wind power will present over the coming decade. The conference was a great opportunity to see and participate in sharing knowledge about the contribution we can make to solving the technological challenges of our era to deliver sustainable and clean energy supply to regions around the world.

The first day primarily focused on storage, transportation, and bunkering (i.e., ship fueling) and panel discussions on the current hydrogen production technologies and the direction we should be taking as we develop these technologies. There is still considerable debate regarding which form is most financially efficient for distribution and storage - Liquid Organic Hydrogen Carrier (LOHC); liquid hydrogen; compressed hydrogen; or conversion to ammonia. The various pros and cons of each was discussed, along with updates on results of various ongoing trials.

The second day of the conference focused on offshore wind, with presentations on future technologies and concepts for the offshore renewables industry. The current target in Norway for 2040 is for 3GW, but this is likely to be further increased. The wind availability on the coast of Norway is abundant, and opportunities and plans for offshore wind energy production are progressively escalating. This is highly relevant to Ireland and the UK, which along with Norway, enjoy the most favourable offshore conditions for energy generation.

A particular highlight of the conference was a trip to the Fjord Base - Norway’s largest supply base for the offshore energy industry. This facility has been built over the past 6 years, availing of the favourable topography and bathymetry provided by the natural fjord, and incorporating deep berths and quays designed specifically for the needs of the offshore energy sector. During the trip, we were guided around the areas designated for future activities in hydrogen production, ammonia production, reuse, and recycling, fishing industry, and support to oil, gas, and offshore wind energy facilities.

Norway is seeking to establish itself as a leader in emission-free solutions and renewable energy across its economy, including green hydrogen production. The UK has already made great strides in terms of offshore wind energy, and is similarly focused on exploiting hydrogen and ammonia to harness surplus energy. The area is gaining increasing attention and momentum in Ireland, and one will see significant investment in the coming years.

Sheskin Windfarm Receives Planning Consent for Grid Connection Works

Last September, An Bord Pleanála granted planning permission for grid connection works at the proposed Sheskin Windfarm, located at Sheskin forest in Co. Mayo. The works involve connecting the eight-turbine windfarm to the nearby Bellacorick substation via 10km of 38kV cables.

ABO Wind Ltd. was originally granted planning permission for eight wind turbines up to 150m in height and associated infrastructure at Sheskin forest in December 2016. Mayo County Council subsequently granted the company permission to increase the tip heights of their eight wind turbines from 150m to 176m (turbines 1-3) and from 150m to 165m (turbines 4-8).

ROD’s involvement in the successful planning application was instrumental in ABO Wind Ltd.’s subsequent decision to engage us for the proposed grid connection works. The trench reinstatement works for cabling and the works stage traffic management along 3km of the N15 national road were of particular concern for the planning authority. These concerns were fully addressed in our design solution.

Working with ABO Wind Ltd. provides a welcome opportunity for ROD to build on our growing portfolio within the energy sector. Previous projects in the sector include Knockroe Windfarm in Co. Tipperary, Ballymanus Windfarm in Co. Wicklow, and the Flagford battery storage facilities in Co. Roscommon, as well as various grid connection projects for Energa Renewables and high voltage cable design works for the ESB and others.
Grid Connection Works for Energia Renewables

Article by Ernst Elen

Our work for Energia Renewables to provide 110kV connections to two proposed solar farms in north Co. Dublin (Fingal) and Co. Meath from existing ESB 220kV substations at Huntstown and Ballycoolin respectively is ongoing. The work is being undertaken by Energia Renewables on behalf of the ESB and Enrgrid, who will energise the connection and own the infrastructure when it is complete. The connections will also benefit the wider national interest by extending the national grid cannot be achieved without grid connections such as these.

The 110kV connections will require the construction of a bank of five connections will also benefit the wider national interest by extending the national grid cannot be achieved without grid connections such as these.

Grid Connection Works for Energia Renewables

Article by Ernst Elen

Our work for Energia Renewables to provide 110kV connections to two proposed solar farms in north Co. Dublin (Fingal) and Co. Meath from existing ESB 220kV substations at Huntstown and Ballycoolin respectively is ongoing. The work is being undertaken by Energia Renewables on behalf of the ESB and Enrgrid, who will energise the connection and own the infrastructure when it is complete. The connections will also benefit the wider national interest by extending the national grid cannot be achieved without grid connections such as these.

The 110kV connections will require the construction of a bank of five connections will also benefit the wider national interest by extending the national grid cannot be achieved without grid connections such as these.

As part of our commission on the A6 Dungiven to Drumahoe dualling scheme in Northern Ireland, ROD, in conjunction with Paul Johnston & Associates, fisheries consultants, was engaged to upgrade Munreery culvert – a large box culvert with a flat concrete bottom. Munreery culvert is a good example of common hydromorphological pressures negatively affecting watercourses. In low flow conditions, the depth of flow in the culvert was so low (<4cm) that it prevented the migration of fish, including salmon and trout. Conversely, in high flow conditions, the high velocities at the outlet resulted in erosion of the downstream channel.

ROD undertook a hydraulic assessment of the culvert and was successful in obtaining Schedule 6 approval for a series of baffles to allow the migration of sensitive fish species without adversely increasing flood risk.

Channel morphology and habitat restoration

As our understanding of hydrological and hydraulic processes developed over the 20th century, sizing proposed river crossings to enable them to convey extreme flows became commonplace. While this focus on conveyance was done with the best of intentions, it led to degradation of the morphological and maintenance practices, they will all assist us in meeting our obligations under the EU Water Framework Directive.

Key ecosystem services and habitat types cannot return to the urban catchments without river restoration measures being undertaken within the main river channel. Typical measures include:

- De-culverting of watercourses;
- Introduction of large woody debris;
- Establishment of in-stream vegetation;
- Creating new meanders in impounded river channels;
- Reconnecting remnant meanders;
- Current deflectors;
- Narrowing channel with aquatic ledges;
- Creating a sinuous low-flow channel in an over-widened channel;
- Fixing whole trees into the riverbank for flow diversity;
- Gravel reworking to restore a low-flow channel;
- Weir removal, and
- Review of reduction in maintenance.

While these measures may have varying impact on current channel morphology and maintenance practices, they will all assist us in meeting our obligations under the EU Water Framework Directive.
Cherrywood Regional Attenuation Pond

Article by Ciaran McGee

Acting as consultant engineer to Dun Laoghaire Rathdown County Council (DLRCC), ROD undertook the preliminary design, Part VIII Planning Act 2008, planning and detailed design stages of the Cherrywood Regional Attenuation Pond 2A, a critical piece of surface water infrastructure to facilitate the development of the Cherrywood Strategic Development Zone (SDZ) in south County Dublin. In addition to the regional attenuation pond, the project included associated inlet / outlet tanks and access tracks and approximately 370km of greenway (preliminary design only). ROD provided engineering and environmental services on the scheme, supported by specialist archaeological, arboricultural and landscape specialists.

Following our appointment, we undertook a rigorous review of feasibility studies previously undertaken by the council to explore the design options for the proposed regional attenuation pond. These included several configurations of ponds in combination with underground attenuation tanks. Given the steep, difficult topography of the site, a tiered cascading pond, with inlet and outlet vegetation swales, was determined by our design team to be the most appropriate solution. This ensured that excavation would be kept to a minimum, reducing the impact on the existing landscape and ecology, and negating the need for underground attenuation tanks. These included several configurations of ponds in combination with underground attenuation tanks. Given the steep, difficult topography of the site, a tiered cascading pond, with inlet and outlet vegetation swales, was determined by our design team to be the most appropriate solution. This ensured that excavation would be kept to a minimum, reducing the impact on the existing landscape and ecology, and negating the need for underground attenuation tanks.

The regional attenuation pond and associated inlet / outlet surface water infrastructure was designed to convey, attenuate and treat surface water run-off from the public roads in the upstream catchment. The pond was designed to attenuate to 1l/sec/ha in accordance with the Cherrywood SDZ’ planning scheme. The infrastructure will convey attenuated flows from the upstream private development plots within the catchment to the Cabinteely River and will enhance biodiversity in the Cherrywood area. Allowance for climate change was made in accordance with the Greater Dublin Strategic Drainage Strategy.

Planning permission was granted in 2021, and the scheme is currently at detailed design stage. It is being funded by the Urban Regeneration & Development Fund (URDF), established by the Department of Heritage, Local Government and Housing to support more compact and sustainable development through the regeneration and rejuvenation of Ireland’s five cities and other large towns, in line with the objectives of the National Planning Framework and National Development Plan.

The project is being developed as part of the Cherrywood Parks, Greenways and Attenuation Project, the total cost of which is estimated at €17.8M. This will see the development of four distinct sub-projects, including surface water attenuation pond 2A. DHLGH formally approved 75% URDF funding for the project in June 2020, with the remaining 25% to be financed by DLRCC through other revenue streams.

South Dublin County Development Plan Strategic Flood Risk Assessment

Article by Warren Vokes

The Water Framework Directive (WFD) identifies hydromorphological integrity as one of three key criteria for determining waterbody status (the other two being ecology and chemical). High status hydromorphology is an indicator of overall high-good waterbody status and resilience within the catchment.

Recent decades have seen an increased awareness of the role riparian zones play in controlling hydromorphological processes. A key driver in this has been a deeper interest in the interactions along aquatic-terrestrial fringes, initially in relation to fisheries and, more recently, in relation to the effects of ecosystem diversity and resilience on climate change. The relationship between riparian corridors and nutrient processing is also more widely understood, i.e., riparian corridors help treat pollutants by acting as buffers between upland areas and open water.

As part of the South Dublin Strategic Flood Risk Assessment (SFRA), ROD completed a strategic hydromorphological assessment of major rivers within South Dublin County. Our assessment has aided the delineation of floodplain boundaries by using morphological features to identify functional riparian zones. It has also provided the basis for sustainable zoning policies that provide ‘room for the river’ and, over time, allow river systems to return to a state of equilibrium, with rich biodiversity, developed ecosystem service provision and resilience to future shocks such as climate change. Adopting this approach has assisted us in meeting our objectives under the Water Framework and Floods Directives.

The key finding of the strategic assessment was the delineation of riparian corridors along the major rivers within the county. Development level hydromorphological assessments are to be undertaken where lands are partially or wholly within the riparian corridor identified as part of the development plan. The development hydromorphological assessment will include an assessment of the existing river reach, identify existing hydromorphological pressures, determine deviation from a “natural” form and propose restorative measures to improve hydromorphological integrity and resilience throughout the river reach.
Surface Water Management in Fingal and South Dublin

Article by Ciaran McGee

Fingal County Council
Acting as consultant engineers to Fingal County Council, ROD prepared surface water management plans to supplement the local area plans, land management plans and masterplans of the following locations across north County Dublin:

- Kinsaleyle Village;
- Barrysparks, Swords;
- Crowscastle, Swords;
- Estuary West, Swords;
- Fosterstown, Swords;
- Churchfields, Mulhuddart;
- Powerstown, Mulhuddart;
- Coolquay Village; and
- Rowlestown Village.

The aim of the commission was to prepare sustainable drainage strategies and undertake Stage I, II and III Flood Risk Assessments (FRAs) to inform local land use and planning policy at each location. Each sustainable drainage strategy examined the existing drainage regime and outlined site-specific measures that could protect and enhance watercourses and their natural ecological, biogeochemical and hydromorphological regimes.

The measures and strategies outlined within the Surface Water Management Plans are currently being implemented as part of the development of these areas.

South Dublin County Council
Separately, South Dublin County Council has recently commissioned ROD to prepare a surface water drainage study to assess the impact of increased surface water run-off from areas zoned for development in the Local Area Plan (LAP) within the towns of Newcastle, Rathcoole and Saggart. The study will include an assessment of the existing public surface water networks serving the aforementioned towns to determine the capacity uplift requirements necessary to facilitate the development areas zoned for development. The review will, where possible, take account of climate change and the introduction of sustainable drainage systems (SuDS).

ROD is pleased to report that the first phase of the O’Devaney Gardens Regeneration Project, a 278-unit social housing development in inner city Dublin, reached completion in December 2022. The regeneration of the site forms part of Dublin City Council’s (DCC) plans to develop vibrant ‘urban quarters’ in the inner city by rebuilding and renovating its oldest social housing complexes. Dolphin House and St Teresa’s Gardens, both of which were constructed by the council in the 1950s, were redeveloped in 2018 and 2021 respectively.

O’Devaney Gardens was located approximately 1km west of Dublin city centre, off the North Circular Road. It was constructed by Dublin City Council in 1954. The original complex consisted of 13 five-storey residential blocks, providing a mix of social and private housing.

With a construction value of approximately €20m, the first phase of the regeneration project comprises 56 housing units in a mix of energy-efficient tenanted housing and apartments above basements. Designed by DCC’s Architecture Department, the buildings are punctuated externally by an attractive mix of brick and brick expression facades which, together with the detailing of the private balconies, enhances the overall attractiveness of the development.

As Employer’s Representative on the scheme, ROD led the administration of the public works contract on the council’s behalf and acted as the primary point of contact for the main contractor, P.J. Carey (Contractors) Ltd. Our responsibilities included ensuring the project was fully compliant with the requirements of the public works contracts and delivering a high-quality solution for our client, with clear cost control.

The Covid-19 pandemic, coupled with fluctuating construction costs over the past 12 months, provided numerous challenges on the project which, in turn, resulted in some unexpected delays. These issues were addressed by ROD in our role as contract administrators.

With residents expected to begin moving into their new homes shortly, we would like to wish them every happiness in the years ahead.
ROD recently added another three schools to our growing list of educational projects in Ireland: St. Kevin’s National School, Sallynoggin, Co. Dublin; Boris Vocational School, Co. Carlow; and Scoil Mhuire National School, Allenwood, Co. Kildare. Previously completed projects include Wesley College Dublin campus upgrade, which included the refurbishment of its sports hall and gymnasium; St. Benedict’s National School, which included the provision of shared community facilities; and Inchicore National School, which won an RIAI award in 2016.

The St. Kevin’s National School project consists of a one and two-storey extension to the existing school, with provision for nine additional classrooms, support teaching spaces, special education needs rooms, play areas and a sensory garden. The extension will connect to the main school building through covered walkways. Improvements to car parking, set down, and pedestrian and cycling facilities are also included. Boris Vocational School has plans for a more ambitious expansion, with additional classrooms, a specialist graphics room, science laboratories, a home economics room, dining facilities, special needs facilities and a central activities space. External works include a sensory garden for students with special needs, playing zones, and traffic management measures. Additional temporary accommodation is being provided to service the school’s short-term needs while the design and construction of the extension is underway.

The Scoil Mhuire National School project involves the provision of additional classrooms and special needs units, as well as refurbishment works to existing facilities. To make the best use of the available space, the Board of Management is reviewing existing play zones and other external facilities to determine the final scope of the refurbishment works.

ROD is delighted to be involved in the provision of new and improved facilities for primary and secondary school students across Ireland. With our strong focus on delivering sustainable designs that promote student health and wellbeing, we hope to inspire the next generation of engineers. We look forward to bringing our educational project experience to other projects in the years to come through our inclusion on all the Department of Education’s Frameworks for Civil and Structural Engineering services.
In 2020, Donegal County Council engaged ROD to provide civil engineering design and contract administration services on the N56 Letterilly to Kilraine project in Co. Donegal. The scheme involves the upgrade of approximately 4.1km of the N56 to Type 3 single carriageway, pavement overlay of approximately 0.6km of the N56 and the construction of a 2.5m wide cycle track adjacent to the existing road. Over the past 12 months, our contract administration and geotechnical teams have met several significant project milestones, including finishing the multitude of construction and embankments over extremely low strength peat soils, the removal of surcharge materials and the completion of pavements.

As geotechnically novel projects such as this provide a wealth of opportunity for pilot studies, trials and research, we were delighted that a group of industry partners, including TII, several consultancies and the scheme contractors, Wills Bros Ltd., came together to propose a study comparing the performance of the surcharged peat in terms of long-term settlements. We hope to undertake our own monitoring and studies.

ROD understands the technical complexity of building on such low strength organic deposits and the steps required to enable construction and meet the objectives of surcharging peat soils to reduce long-term creep settlements. We hope to undertake our own study of the stability of these embankments during construction, the amount of fill lost to settlements and how this compares in terms of environmental impacts due to geotechnical treatments. We are excited by the prospect of engaging with colleagues and clients on this in the future. We wish Farimah and her supervisor, Dr. Bryan McCabe, all the best as they continue their long-term monitoring and studies.

ROD-AECOM has been awarded the N61 Tulsk to Gortnacrannagh Road project in Co. Roscommon. The scheme is approximately 5km in length and links the N61 Tulsk to Claslahad Road project in the south to the N5 Ballaghaderreen to Scramoge Road project to the north. The proposed development will improve the road alignment, improving traffic safety, reducing accidents, and improving accessibility.

ROD-AECOM’s commission is to provide technical consultancy services for Phases 1 to 4 of the TII Project Management Guidelines (i.e., up to planning). Phase 1 was completed last August, and we are currently in the process of mapping constraints and developing options as part of the option selection studies.

While the existing N61 alignment is relatively straight horizontally, it has two substantial curves to the north and is visibly substandard in terms of vertical alignment and cross-section. The substandard vertical alignment is due to poor underlying ground conditions in the vicinity, resulting in differential settlement of the carriageway. This makes travelling the route uncomfortable and potentially dangerous for unsuspecting road users travelling close to the speed limit. The poor ground conditions also impact the effectiveness of the safety barrier and the foundations of telegraph poles, signs, and other street furniture.

To maintain the existing road pavement in a satisfactory condition, significant periodic structural repairs have been necessary, a solution that is not sustainable in the long-term. The issues can only be addressed by appropriate intervention in the form of a newly constructed carriageway over its length.

The underlying ground conditions comprise cut-over peat, marl, alluvium associated with watercourses, interspersed with sections of till derived from limestone. A ground investigation (GI) is ongoing to determine the depth and extent of the soft ground, which will inform the option selection process and sustainability assessment. The GI logs have highlighted peat and marl deposits of up to 18.6m immediately adjacent to the existing route. Our geotechnical department will therefore play a crucial role in identifying the preferred option and developing the scheme design for planning.
I have recently been appointed as project lead on an exciting peatland rehabilitation research project being undertaken on behalf of TII. The objective of the project is to provide a new technical guidance document for assessing - from the perspective of a wetland's long-term carbon sequestration capabilities - future interactions between national roads, greenways, motorway service areas and the landscapes adjacent to them. In my role as project lead, I am being supported by a team of specialists drawn from ROD’s geotechnical, water and environmental teams, Arup, Wetlands Survey Ireland and lecturers/academic researchers from Atlantic Technological University (ATU), University College Dublin (UCD) and Trinity College Dublin (TCD).

The project will examine what can be done with surplus excavated peat arising out of current and future TII projects and the impacts earthworks and drainage infrastructure have on greenhouse gas emissions. Key areas to be explored by the project team include how peatlands can be adequately characterised at a sufficiently early stage in a project to identify project risks and opportunities; and where innovations, such as borrow pit locations and peat storage areas, can bring major benefits into future works plans. For example, elevated peat storage areas are likely to dry out where long-term groundwater levels are lower. This would cause the release of further methane. The project may determine that improvements in the design of deposition areas or reworking could potentially result in more positive impacts in ecological and biodiversity assessments. It could also determine that degraded peatlands can potentially be improved by TII projects and, hopefully, begin to sequester carbon again. Wetland habitats and species may have more significant roles to play in managing carbon budgets and enabling scheme designs demonstrating net zero aspirations. Hydrology and hydrogeology disciplines will support the potential drainage and groundwater interactions also considering the likely impacts of climate change and constraints for landscape designs. Survey and assessment methodologies will be developed and presented, with inputs from the technical steering committee and stakeholder consultees.

Years ago, I was oblivious to the true carbon cost of excavating peat. I enjoyed trips to the bog during my youth, helping my cousins ‘save turf’. I appreciated its peaty smell, even more so on cold winter nights. Now the time has come for engineers to step forward to help save the bogs and tip the scales in favour of leveraging them to combat climate change. With a fantastic team in place and detailed technical guidance document for assessing - from the perspective of a wetland’s long-term carbon sequestration capabilities - future interactions between national roads, greenways, motorway service areas and the landscapes adjacent to them. In my role as project lead, I am being supported by a team of specialists drawn from ROD’s geotechnical, water and environmental teams, Arup, Wetlands Survey Ireland and lecturers/academic researchers from Atlantic Technological University (ATU), University College Dublin (UCD) and Trinity College Dublin (TCD).

The project will examine what can be done with surplus excavated peat arising out of current and future TII projects and the impacts earthworks and drainage infrastructure have on greenhouse gas emissions. Key areas to be explored by the project team include how peatlands can be adequately characterised at a sufficiently early stage in a project to identify project risks and opportunities; and where innovations, such as borrow pit locations and peat storage areas, can bring major benefits into future works plans. For example, elevated peat storage areas are likely to dry out where long-term groundwater levels are lower. This would cause the release of further methane. The project may determine that improvements in the design of deposition areas or reworking could potentially result in more positive impacts in ecological and biodiversity assessments. It could also determine that degraded peatlands can potentially be improved by TII projects and, hopefully, begin to sequester carbon again. Wetland habitats and species may have more significant roles to play in managing carbon budgets and enabling scheme designs demonstrating net zero aspirations. Hydrology and hydrogeology disciplines will support the potential drainage and groundwater interactions also considering the likely impacts of climate change and constraints for landscape designs. Survey and assessment methodologies will be developed and presented, with inputs from the technical steering committee and stakeholder consultees.

The fact that particular species are primarily responsible for the healthy functioning of peatlands has already been proven, so the project may determine that improvements in the design of deposition areas or reworking could potentially result in more positive impacts in ecological and biodiversity assessments. It could also determine that degraded peatlands can potentially be improved by TII projects and, hopefully, begin to sequester carbon again. Wetland habitats and species may have more significant roles to play in managing carbon budgets and enabling scheme designs demonstrating net zero aspirations. Hydrology and hydrogeology disciplines will support the potential drainage and groundwater interactions also considering the likely impacts of climate change and constraints for landscape designs. Survey and assessment methodologies will be developed and presented, with inputs from the technical steering committee and stakeholder consultees.

Years ago, I was oblivious to the true carbon cost of excavating peat. I enjoyed trips to the bog during my youth, helping my cousins ‘save turf’. I appreciated its peaty smell, even more so on cold winter nights. Now the time has come for engineers to step forward to help save the bogs and tip the scales in favour of leveraging them to combat climate change. With a fantastic team in place and detailed technical guidance document for assessing - from the perspective of a wetland’s long-term carbon sequestration capabilities - future interactions between national roads, greenways, motorway service areas and the landscapes adjacent to them. In my role as project lead, I am being supported by a team of specialists drawn from ROD’s geotechnical, water and environmental teams, Arup, Wetlands Survey Ireland and lecturers/academic researchers from Atlantic Technological University (ATU), University College Dublin (UCD) and Trinity College Dublin (TCD).

The project will examine what can be done with surplus excavated peat arising out of current and future TII projects and the impacts earthworks and drainage infrastructure have on greenhouse gas emissions. Key areas to be explored by the project team include how peatlands can be adequately characterised at a sufficiently early stage in a project to identify project risks and opportunities; and where innovations, such as borrow pit locations and peat storage areas, can bring major benefits into future works plans. For example, elevated peat storage areas are likely to dry out where long-term groundwater levels are lower. This would cause the release of further methane. The project may determine that improvements in the design of deposition areas or reworking could potentially result in more positive impacts in ecological and biodiversity assessments. It could also determine that degraded peatlands can potentially be improved by TII projects and, hopefully, begin to sequester carbon again. Wetland habitats and species may have more significant roles to play in managing carbon budgets and enabling scheme designs demonstrating net zero aspirations. Hydrology and hydrogeology disciplines will support the potential drainage and groundwater interactions also considering the likely impacts of climate change and constraints for landscape designs. Survey and assessment methodologies will be developed and presented, with inputs from the technical steering committee and stakeholder consultees.

The fact that particular species are primarily responsible for the healthy functioning of peatlands has already been proven, so the project may determine that improvements in the design of deposition areas or reworking could potentially result in more positive impacts in ecological and biodiversity assessments. It could also determine that degraded peatlands can potentially be improved by TII projects and, hopefully, begin to sequester carbon again. Wetland habitats and species may have more significant roles to play in managing carbon budgets and enabling scheme designs demonstrating net zero aspirations. Hydrology and hydrogeology disciplines will support the potential drainage and groundwater interactions also considering the likely impacts of climate change and constraints for landscape designs. Survey and assessment methodologies will be developed and presented, with inputs from the technical steering committee and stakeholder consultees.

As part of the INFRALINC project, ROD-IS recently held two Stakeholder workshops to gather information to develop a design for a full-scale study to assess the risk posed to Critical Infrastructure (CI) in Ireland due to climate change. The workshops were attended by representatives from Local Authorities, Infrastructure owners and managers, Met Eireann the Department of Defence. This work is being funded through Ireland’s Environmental Protection Agency (EPA) Research Programme 2021-2030. An overview of the project was presented at the 2022 TII winter maintenance conference in November.

The first workshop focused on identifying potential Extreme Weather Events in Ireland and related hazards, as well as the infrastructure that would be affected by these events. The workshop also discussed the current processes and procedures utilised by the attendees in undertaking a risk assessment of their assets. The second Workshop focussed on the identification of the data used to perform the risk assessments, data availability, gaps in the available data, and limitations on the use of the data. Our primary focus was to gain a fuller appreciation of the data used to evaluate the hazards in order to allow us to better assess infrastructure vulnerability.

As part of the INFRALINC project, ROD-IS recently held two Stakeholder workshops to gather information to develop a design for a full-scale study to assess the risk posed to Critical Infrastructure (CI) in Ireland due to climate change. The workshops were attended by representatives from Local Authorities, Infrastructure owners and managers, Met Eireann the Department of Defence. This work is being funded through Ireland’s Environmental Protection Agency (EPA) Research Programme 2021-2030. An overview of the project was presented at the 2022 TII winter maintenance conference in November.

The first workshop focused on identifying potential Extreme Weather Events in Ireland and related hazards, as well as the infrastructure that would be affected by these events. The workshop also discussed the current processes and procedures utilised by the attendees in undertaking a risk assessment of their assets. The second Workshop focussed on the identification of the data used to perform the risk assessments, data availability, gaps in the available data, and limitations on the use of the data. Our primary focus was to gain a fuller appreciation of the data used to evaluate the hazards in order to allow us to better assess infrastructure vulnerability.

As part of the INFRALINC project, ROD-IS recently held two Stakeholder workshops to gather information to develop a design for a full-scale study to assess the risk posed to Critical Infrastructure (CI) in Ireland due to climate change. The workshops were attended by representatives from Local Authorities, Infrastructure owners and managers, Met Eireann the Department of Defence. This work is being funded through Ireland’s Environmental Protection Agency (EPA) Research Programme 2021-2030. An overview of the project was presented at the 2022 TII winter maintenance conference in November.

The first workshop focused on identifying potential Extreme Weather Events in Ireland and related hazards, as well as the infrastructure that would be affected by these events. The workshop also discussed the current processes and procedures utilised by the attendees in undertaking a risk assessment of their assets. The second Workshop focussed on the identification of the data used to perform the risk assessments, data availability, gaps in the available data, and limitations on the use of the data. Our primary focus was to gain a fuller appreciation of the data used to evaluate the hazards in order to allow us to better assess infrastructure vulnerability.

As part of the INFRALINC project, ROD-IS recently held two Stakeholder workshops to gather information to develop a design for a full-scale study to assess the risk posed to Critical Infrastructure (CI) in Ireland due to climate change. The workshops were attended by representatives from Local Authorities, Infrastructure owners and managers, Met Eireann the Department of Defence. This work is being funded through Ireland’s Environmental Protection Agency (EPA) Research Programme 2021-2030. An overview of the project was presented at the 2022 TII winter maintenance conference in November.

The first workshop focused on identifying potential Extreme Weather Events in Ireland and related hazards, as well as the infrastructure that would be affected by these events. The workshop also discussed the current processes and procedures utilised by the attendees in undertaking a risk assessment of their assets. The second Workshop focussed on the identification of the data used to perform the risk assessments, data availability, gaps in the available data, and limitations on the use of the data. Our primary focus was to gain a fuller appreciation of the data used to evaluate the hazards in order to allow us to better assess infrastructure vulnerability.
Engineers Ireland extends ROD’s CPD Accreditation for maximum three-year period

Article by Roberta Keaney

ROD is delighted to announce that Engineers Ireland has once again extended our Continuing Professional Development (CPD) Accredited Employer status for the maximum three-year period. The accreditation underscores our commitment to the professional development of our team and our dedication to setting high standards in support of lifelong learning.

Speaking at a parchment presentation in our head office in Sandyford in October, ROD Director, Marc Jones, underlined the importance of training and development to ROD’s business strategy, saying: “We recognise that for our business to grow and become more efficient, we need our employees to grow with us, learning new skills, refining the way they work and use new tools.”

ROD CPD Director, Edward Warren, pointed to the company’s enthusiasm for using the latest technology to hone skills and deliver smarter, more targeted staff training, commenting: “During the COVID-19 pandemic, our people embraced the e-learning opportunities we provided, confirming for us that cloud-based e-learning systems and tailored training techniques will play a significant role in staff training and development going forward.”

Engineers Ireland CPD Associate Director, Aidan O’Flaherty

New Recruits

Christopher McGuill

Christopher joined our graduate programme last September and is currently working with our buildings team. Prior to joining ROD, he worked on Wannaw Spire, a 50-storey commercial office building in Warsaw’s business district, helping to design aspects of the reinforced concrete superstructure during its construction stage. Christopher is a graduate of UCD, where he earned a Master’s in Structural Engineering, with Architecture. His main interests outside of work include history, running and reading.

Emma Lillingston

Emma joined our UK team as an Office Administrator last June. Since then, she has been busy supporting both our administrative and bid teams. Emma is a graduate of the University of the Arts London, where she undertook a Bachelor of Arts in Sculpture. In her spare time, she enjoys walking her dog, baking and undertaking creative projects.

Sharath Jayaramu

Sharath joined our team as a Highway Design Engineer last August. He has over nine years’ experience working on international highway design and traffic engineering projects. Sharath’s main area of expertise is the geometric design of urban and rural highways, junctions and roundabouts. He holds a BE in Civil Engineering from Osmania University, Hyderabad in India and an MTech in Transportation Engineering from Indian Institute of Technology Madras, Chennai in India. Sharath enjoys cooking, travelling, reading and watching/playing sports, particularly football and cricket.

Emma joined our UK team as an Office Administrator last June. Since then, she has been busy supporting both our administrative and bid teams. Emma is a graduate of the University of the Arts London, where she undertook a Bachelor of Arts in Sculpture. In her spare time, she enjoys walking her dog, baking and undertaking creative projects.

Conor Reilly

Conor joined ROD as a Graduate Graphic Designer last November. He studied at Dublin Design Institute, where he earned a Level 7 degree in Graphic Design. Conor’s previous training as a Sound Engineer helped him to discover his interest in the arts, and he quickly graduated from producing poster designs for local music events to developing brand identity designs for independent businesses. In his spare time, Conor enjoys music programming, DJing and racing model racing cars.

Rajashekar Vemula

Rajashekar joined our transportation team as a Highway Design Engineer last August. He has over nine years’ experience working on international highway design and traffic engineering projects. Rajashekar’s main area of expertise is the geometric design of urban and rural highways, junctions and roundabouts. He holds a BE in Civil Engineering from Osmania University, Hyderabad in India and an MTech in Transportation Engineering from Indian Institute of Technology Madras, Chennai in India. Rajashekar enjoys travel, cricket and spending time with friends and family.

Niamh Moore

Niamh joined our graduate programme last September and is currently working with our environmental team. She recently graduated with a ME in Structural Engineering with Architecture from UCD, having completed a BSc in Structural Engineering with Architecture at UCD in 2020. In her spare time, Niamh enjoys running, movies and pub quizzes.

Rajashekar Vemula

Rajashekar joined our transportation team as a Highway Design Engineer last August. He has over nine years’ experience working on international highway design and traffic engineering projects. Rajashekar’s main area of expertise is the geometric design of urban and rural highways, junctions and roundabouts. He holds a BE in Civil Engineering from Osmania University, Hyderabad in India and an MTech in Transportation Engineering from Indian Institute of Technology Madras, Chennai in India. Rajashekar enjoys travel, cricket and spending time with friends and family.

Engineers Ireland CPD Associate Director, Aidan O’Flaherty
As the newest member of ROD’s Social Committee, I was delighted to be entrusted with the task of organising an evening of kayaking on the River Liffey last September. The promise of a fun, outdoor challenge—completely different to anything we had done before, and yet neither extreme nor ridiculous—was just what we needed after two years of lockdowns and Covid-19 restrictions.

When I arrived at Dublin City Kayaking’s launching base beside the Jeanie Johnston Tall Ship on 2 September, I was met by a large group of equally excited colleagues. For some, the prospect of spotting some riverbank wildlife was the main draw. For others, it was the opportunity to paddle towards the heart of the city while building a little upper body strength. Me? I was looking forward to our guided tour of the city’s architectural gems—the bridges of Dublin!

Once our instructor had completed an introductory training session, we took to our kayaks, pacifically paddling under the Samuel Beckett, Sean O’Casey, Rosie Hackett, O’Connell and Ha’penny bridges. An experienced tour guide discussed the history behind each bridge with us and, from our unique vantage point on the water, we discovered a new appreciation for the magnificent feats of engineering required to bring them to life.

While the two-hour tour was over in what seemed like a heartbeat, the experience was, for a bridge engineer like me, special. The late burst of summer sunshine, the breathtaking views of the city, the closeness to nature, followed by drinks and nibbles at sunset with a great group of colleagues, all combined to make it an evening to remember!

Making a splash: ROD’s Dublin team learns to kayak
Article by Debbie Chiu

As the newest member of ROD’s Social Committee, I was delighted to be entrusted with the task of organising an evening of kayaking on the River Liffey last September. The promise of a fun, outdoor challenge—completely different to anything we had done before, and yet neither extreme nor ridiculous—was just what we needed after two years of lockdowns and Covid-19 restrictions.

When I arrived at Dublin City Kayaking’s launching base beside the Jeanie Johnston Tall Ship on 2 September, I was met by a large group of equally excited colleagues. For some, the prospect of spotting some riverbank wildlife was the main draw. For others, it was the opportunity to paddle towards the heart of the city while building a little upper body strength. Me? I was looking forward to our guided tour of the city’s architectural gems—the bridges of Dublin!

Once our instructor had completed an introductory training session, we took to our kayaks, pacifically paddling under the Samuel Beckett, Sean O’Casey, Rosie Hackett, O’Connell and Ha’penny bridges. An experienced tour guide discussed the history behind each bridge with us and, from our unique vantage point on the water, we discovered a new appreciation for the magnificent feats of engineering required to bring them to life.

While the two-hour tour was over in what seemed like a heartbeat, the experience was, for a bridge engineer like me, special. The late burst of summer sunshine, the breathtaking views of the city, the closeness to nature, followed by drinks and nibbles at sunset with a great group of colleagues, all combined to make it an evening to remember!
Where did you study?
As an undergraduate, I studied at University of Nottingham, earning a BEng (Hons) in Civil Engineering. I subsequently completed an MSc in Structural Engineering with Management at Nottingham Trent University and a PGrad. Dip in Sustainable Energy at Trinity College Dublin.

What attracted you to ROD?
I first heard of ROD when one of my professors at Trinity College Dublin recommended the company to me, and I was drawn in by the variety of projects it was engaged in.

When did you start at ROD?
I joined ROD’s graduate programme in September 2016.

What is your role in the company?
I am a design engineer in the transportation team. I also assist on projects outside transportation when the opportunity presents itself.

If you could work in any country, where would you like to settle?
For now, I’m quite happy in Dublin, but Donegal is fast becoming my second home. In the future, I would be very interested in developing projects similar to those I have gained experience in at ROD across various parts of the African continent. I would love to live in at least two countries on every continent (to get a chance to do some travelling), but I see myself returning to Ireland and settling here. I still have a lot of my roots to discover here!

What do you do to unwind? Do you have a hobby?
I’ve been playing a lot of different sports recently, including soccer and boxing, which may be the reason I get injured so often. I’m thinking of taking up golf next!

I’ve also picked up the habit of watching obscure B-movies thanks to a few of my colleagues (they know who they are), but I tend to spend most of my time reading philosophy books (more so just to argue).

Which three people would you most like to invite to dinner?
Sam Harris (a philosopher), Barbara Williams (an astronomer) and Russell Brand (a comedian). It might be a fun/chaotic conversation, no?

What type of work environment do you prefer?
I enjoy a quiet working environment with a little background noise or music. I can still focus when things are busy, but I’ve come to appreciate the benefits of having quiet time to think.

If you were to switch careers tomorrow, what would you do?
Something in aerospace. I have always been interested in the cosmos. If I had to leave engineering altogether, I would probably go into psychology or philosophy.

What is working in the Northwood office like?
Entertaining, convenient, supportive… I can go on and on. I enjoy having a small working group to bounce ideas off and ask annoying/silly/challenging questions. Fortunately, I get all that in Northwood office!

Five minutes with Ernest Etim
Where are you from?
I’m from Ikot Ekpene in Akwa-Ibom, Nigeria.

Describe yourself in three words
Easy-going, punctilious and ambitious.

Why did you choose a career in engineering?
My father sowed the seeds for my career in engineering when, after I expressed an early interest in becoming a pilot, he suggested that instead of learning how to fly a plane I should consider learning how to build a plane. It made me realise that piloting was just something I wanted to do, but to leave a mark and have an impact on people’s lives, engineering was a better choice for me.

Five minutes with Ernest Etim
Where are you from?
I’m from Ikot Ekpene in Akwa-Ibom, Nigeria.

Describe yourself in three words
Easy-going, punctilious and ambitious.

Why did you choose a career in engineering?
My father sowed the seeds for my career in engineering when, after I expressed an early interest in becoming a pilot, he suggested that instead of learning how to fly a plane I should consider learning how to build a plane. It made me realise that piloting was just something I wanted to do, but to leave a mark and have an impact on people’s lives, engineering was a better choice for me.

Five minutes with Ernest Etim
Where are you from?
I’m from Ikot Ekpene in Akwa-Ibom, Nigeria.

Describe yourself in three words
Easy-going, punctilious and ambitious.

Why did you choose a career in engineering?
My father sowed the seeds for my career in engineering when, after I expressed an early interest in becoming a pilot, he suggested that instead of learning how to fly a plane I should consider learning how to build a plane. It made me realise that piloting was just something I wanted to do, but to leave a mark and have an impact on people’s lives, engineering was a better choice for me.

Five minutes with Ernest Etim
Where are you from?
I’m from Ikot Ekpene in Akwa-Ibom, Nigeria.

Describe yourself in three words
Easy-going, punctilious and ambitious.

Why did you choose a career in engineering?
My father sowed the seeds for my career in engineering when, after I expressed an early interest in becoming a pilot, he suggested that instead of learning how to fly a plane I should consider learning how to build a plane. It made me realise that piloting was just something I wanted to do, but to leave a mark and have an impact on people’s lives, engineering was a better choice for me.
1. The World Bank’s international threshold for extreme poverty is:
 a) 1.25 dollars
 b) 1.90 dollars
 c) 5 dollars

2. Food production will need to increase by what percentage to feed the world in 2050?
 a) 20%
 b) 40%
 c) 60%

3. What is the average life expectancy in the world in 2022?
 a) 51 years
 b) 61 years
 c) 71 years

4. How many adults around the world are unable to read and write?
 a) 2 in 10
 b) 3 in 10
 c) 4 in 10

5. Worldwide, how many young women were married in childhood in 2021?
 a) 1 in 10
 b) 1 in 5
 c) 1 in 8

6. How many people in the world do not have access to basic drinking water?
 a) 12 billion
 b) 5 billion
 c) 5.5 billion

7. How many people in the world did not have access to electricity in 2020?
 a) 733 million
 b) 3 billion

8. What percentage of the world’s population works in the informal economy?
 a) 41%
 b) 51%
 c) 61%

9. What percentage of the population of the world’s least developed countries have access to the internet?
 a) 19%
 b) 26%
 c) 34%

10. How many people have experienced discrimination on at least one of the grounds prohibited under international human rights law?
 a) 1 in 4
 b) 1 in 5
 c) 1 in 6

11. How many people are projected to live in cities in 2050?
 a) 4.2 billion
 b) 5 billion
 c) 5.5 billion

12. How much food is wasted worldwide each year?
 a) 1.2 billion tonnes
 b) 1.3 billion tonnes
 c) 1.4 billion tonnes

13. How many people worldwide will be displaced by drought by 2030?
 a) 700 million
 b) 800 million
 c) 850 million

14. What fraction of global annual CO2 emissions is absorbed by oceans?
 a) 1/3
 b) 1/4
 c) 1/6

15. How many hectares of forest are destroyed around the world each year?
 a) 8 million
 b) 9 million
 c) 10 million

16. What percentage of the global population lives in conflict-affected countries?
 a) 25%
 b) 33%
 c) 42%

17. How much foreign direct investment was provided to support sustainable development in 2021?
 a) 1.28 trillion
 b) 1.38 trillion
 c) 1.58 trillion